Note: This is the 2016–2017 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Program Requirements
Students in this concentration take five courses in the area of design, including the completion of an interdisciplinary project.
Students should complete a Course Authorization Form, available from the ¿´Æ¬ÊÓƵ Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.
Total concentration credit weight: 15-16 credits
Required Courses
6 credits
-
MECH 498 Interdisciplinary Design Project 1 (3 credits)
Overview
Mechanical Engineering : Completion of an individual project on an interdisciplinary theme with emphasis on a balanced combination on analysis and synthesis.
Terms: Fall 2016
Instructors: Angeles, Jorge (Fall)
(1-2-6)
-
MECH 499 Interdisciplinary Design Project 2 (3 credits)
Overview
Mechanical Engineering : The individual project initiated in MECH 498 is continued and finalized in this course.
Terms: Winter 2017
Instructors: Angeles, Jorge (Winter)
(1-2-6)
Corequisite: MECH 498.
Complementary Courses
9-10 credits from the following:
-
ARCH 515 Sustainable Design (3 credits)
Overview
Architecture : This course will address sustainable design theory and applications in the built environment with students from a variety of fields (architecture, urban planning, engineering, sociology, environmental studies, economics, international studies). Architecture will provide the focus for environmental, socio-cultural and economic issues.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
(3-0-6)
Prerequisite: ARCH 377 or permission of instructor.
-
CHEE 453 Process Design (4 credits)
Overview
Chemical Engineering : Analysis of design alternatives. Structure of process design systems, degrees of freedom, information flow. Computer-aided process and plant design programs, physical properties, specifications, recycle convergence, optimization, applications, economics. Safety, environmental control in plant design.
Terms: Fall 2016
Instructors: Salama, Philippe; Maric, Milan (Fall)
-
MECH 497 Value Engineering (3 credits)
Overview
Mechanical Engineering : Value Engineering is an in-depth analysis of an industrial product or process with a view to improving its design and/or performance to increase its worth. This is a workshop type of course. Projects will be supplied by industrial firms and students will work in teams with industrial personnel.
Terms: Fall 2016
Instructors: Zsombor-Murray, Paul Joseph (Fall)
(0-8-1)
Prerequisites: MECH 393 and completion of 45 credits
-
MECH 526 Manufacturing and the Environment (3 credits)
Overview
Mechanical Engineering : Course topics include: clean manufacturing, product and process design for minimizing materials and energy use, the product life cycle, impact of technology on the environment, environmental impact assessment, regulatory process, and managing the "political" process.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
(3-0-6)
Prerequisite (Undergraduate): Permission of the instructor
-
MECH 528 Product Design (3 credits)
Overview
Mechanical Engineering : A study of the design issues present in product life cycle demands. Computer-aided systems. Rapid prototyping. Design for manufacturability. Integration of mechanics, electronics and software in products. Effect on design of product cost, maintainability, recycling, marketability.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
(3-0-6)
Prerequisite (Undergraduate): Permission of the instructor
Course will run for 7 days (exam on the last day). Therefore, classes will be held on April 12, 13, 19, 20, 26, 27 and May 24.
Due to the intensive nature of this course, the standard add/drop and withdrawal deadlines do not apply. Add/drop is the first lecture day and withdrawal is the second lecture day.
-
MECH 530 Mechanics of Composite Materials (3 credits)
Overview
Mechanical Engineering : Fiber-reinforced composites. Stress, strain, and strength of composite laminates and honeycomb structures. Failure modes and failure criteria. Environmental effects. Manufacturing processes. Design of composite structures. Computer modelling of composites. Computer techniques are utilized throughout the course.
Terms: Fall 2016
Instructors: Lessard, Larry (Fall)
(3-0-6)
Corequisite: MECH 321 or equivalent/instructor's permission.
-
MECH 541 Kinematic Synthesis (3 credits)
Overview
Mechanical Engineering : The role of kinematic synthesis within the design process. Degree of freedom. Kinematic pairs and bonds. Groups and subgroups of displacements. Applications to the qualitative synthesis of parallel-kinematics machines with three and four degrees of freedom. Function, motion and path generation problems in planar, spherical and spatial four-bar linkages. Extensions to six-bar linkages. Cam mechanisms.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
-
MECH 543 Design with Composite Materials (3 credits)
Overview
Mechanical Engineering : Material systems/selection process. Cost vs. performance. Laminate layup procedures. Theory and application of filament winding of composite cylinders. Regular oven and autoclave oven curing, analysis of resulting material performance. Practical design considerations and tooling. Analysis of environmental considerations. Joining techniques. Analysis of test methods. Theory of repair techniques.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
(3-3-3)
Prerequisite: MECH 530
-
MECH 557 Mechatronic Design (3 credits)
Overview
Mechanical Engineering : Team project course on the design, modelling, model validation, and control of complete mechatronic systems, constructed with modern sensors, actuators, real-time operating systems, embedded controllers, and intelligent control.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
-
MECH 565 Fluid Flow and Heat Transfer Equipment (3 credits)
Overview
Mechanical Engineering : Pipes and piping systems, pumps, and valves. Fans and building air distribution systems. Basic thermal design methods for fins and heat exchangers. Thermal design of shell-and-tube and compact heat exchangers.
Terms: Winter 2017
Instructors: Baliga, Bantwal (Winter)
-
MECH 577 Optimum Design (3 credits)
Overview
Mechanical Engineering : The role of optimization within the design process: Design methodology and philosophy. Constrained optimization: The Kuhn-Tucker conditions. Techniques of linear and non-linear programming. The simplex and the complex methods. Sensitivity of the design to manufacturing errors. Robustness of the design to manufacturing and operation errors.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.
-
MECH 579 Multidisciplinary Design Optimization (3 credits)
Overview
Mechanical Engineering : A comprehensive introduction to important algorithms in sensitivity analysis and multidisciplinary design optimization of large systems. Topics include: unconstrained and constrained optimization, sensitivity analysis, gradient-free optimization, multi-objective optimization, and various multidisciplinary algorithms and approaches for design optimization.
Terms: This course is not scheduled for the 2016-2017 academic year.
Instructors: There are no professors associated with this course for the 2016-2017 academic year.